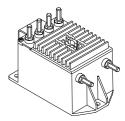
Voltage Transducer CV 3-1500

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data


v		1000	V
$V_{_{PN}}$	Primary nominal r.m.s. voltage	1000	V
V _P	Primary voltage, measuring range	0 ± 1500	V
V _s	Secondary analog voltage @ $V_{P_{max}}$	10	V
K	Conversion ratio	1500 V/10 V	
R	Load resistance	≥ 1	kΩ
C	Capacitive loading	≤ 5	nF
V _c	Supply voltage (± 5 %)	± 15	V
I _c	Current consumption	32 + V _s /R	mΑ
Ň _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	6	kV
Ve	R.m.s. voltage for partial discharge extinction @ 10 $\ensuremath{\text{pC}}$	2	kV

Accuracy - Dynamic performance data

X _G V _o	Overall accuracy @ $\mathbf{V}_{P \max}$ Offset voltage @ $\mathbf{V}_{P} = 0$	$T_A = 25^{\circ}C$ - 40°C + 85°C $T_A = 25^{\circ}C$ - 40°C + 85°C	Typ Ma ± 0 ± 0 ± 5 ± 1	0.2 % 0.6 % 6.0 mV
f	Response time ¹⁾ @ 90 % of V _{P max} dv/dt accurately followed Frequency bandwidth (- 1 dB) @ 3		0.4 900 DC 800	μs V/μs kHz
T _A	Ambient operating temperature		- 40 + 85	°C
T _s	Ambient storage temperature		- 45 + 90	°C
P	Total primary power loss		2.8	W
\mathbf{R}_{1}	Primary resistance		360	kΩ
m	Mass		560	g

EN 50155

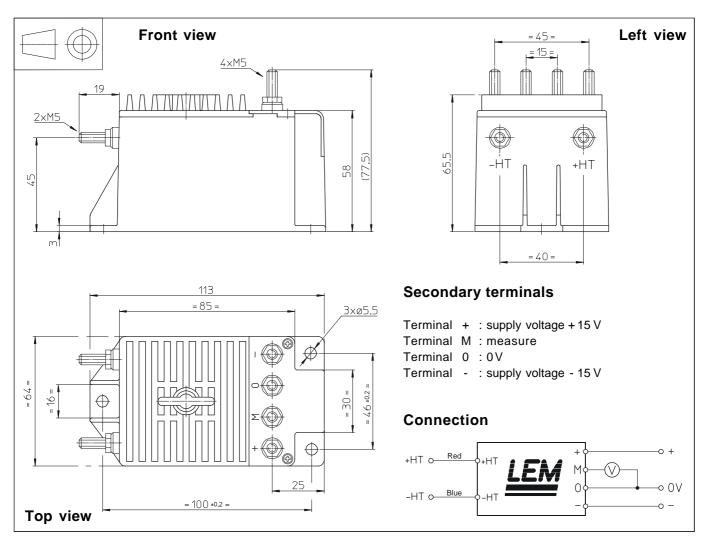
$V_{_{\rm PN}} = 1000 V$

Features

- Closed loop (compensated) voltage transducer
- Insulated plastic case recognized according to UL 94-V0
- Patent pending.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- High bandwidth
- High immunity to external interference
- Low disturbance in common mode.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

<u>Note</u> : $^{1)}$ With a dv/dt of 900 V/µs

Standards

Dimensions CV 3-1500 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
- Fastening torque max
- Connection of primary
- Connection of secondary
- Fastening torque max

± 0.3 mm

- 3 holes \emptyset 5.5 mm 3 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.
- M5 threaded studs
- M5 threaded studs
- 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- $V_{_{\rm P}}$ is positive when $V_{_{\rm P}}$ is applied on terminal +HT.
- CEM tested with a shielded secondary cable. Shield connected to 0 V at both ends, or disconnected.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.